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The aim of this paper is the study of a new sequence of positive linear approximation
operators Mn, * on C([0, 1]) which generalize the classical Bernstein�Durrmeyer
operators. After proving a Voronovskaja-type result, we show that there exists a
strongly continuous positive contraction semigroup on C([0, 1]) which may be
expressed in terms of powers of these operators. As a direct consequence, we are
able to represent explicitly the solutions of the Cauchy problems associated with a
particular class of second order differential operators. � 1999 Academic Press
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INTRODUCTION

In [15] J. L. Durrmeyer introduced a sequence (Mn)n # N of particular
modified Bernstein polynomial operators which enjoy nice approximation
properties. These operators are defined by putting for every n # N and
f # L1([0, 1])

Mn( f )(x) :=(n+1) :
n

k=0

pn, k(x) |
1

0
pn, k(t) f (t) dt (0�x�1), (1)

where pn, k(x) :=( n
k) xk(1&x)n&k (0�k�n, x # [0, 1]).

A careful analysis of such operators, usually called Bernstein�Durrmeyer
operators, was carried out for the first time by Derriennic in [11]. Subse-
quently Heilmann [16] studied the saturation properties in the space Lp

(1�p<�), whereas Ditzian and Ivanov [13] studied their rate of
convergence and that of their derivatives in terms of the so-called Ditzian�
Totik modulus of continuity. Other inverse results have been stated, for
instance, in [30, 32].
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Rather recently an interesting generalization of the operators Mn in
terms of the so-called Jacobi weights has been developed in [7, 8] (see also
[18, 19]).

Multidimensional Bernstein�Durrmeyer operators have been introduced
and studied by Derriennic in [12]; some further results in this setting may
also be found, for instance, in [9, 29, 31]; particular multidimensional
weighted Bernstein�Durrmeyer operators have also been considered by
Sauer in [23].

The purpose of the present paper is to provide a further generalization
of the operators Mn in the one-dimensional case by means of quite different
techniques. More precisely, we shall use a composition argument referring,
in this direction, to the obvious relationship

Mn=Bn b Bn (n # N), (2)

where for each n # N Bn is the classical n th Bernstein polynomial on
C([0, 1]) whereas Bn denotes the n th Beta operator introduced by Lupas�
in [17, p. 37] and defined by

Bn( f )(x) :=
1

B(nx+1, n+1&nx) |
1

0
tnx(1&t)n(1&x) f (t) dt

for every f # C([0, 1]) and x # [0, 1], B( } , } ) being the standard Beta
function.

Our starting point is a continuous function *: [0, 1] � [0, 1] such that
1�2�*(x)�1 for every x # [0, 1]; we set #(x) :=2*(x)&1 (0�x�1) and
for every n # N define

Mn, * :=Ln, # b Bn, * , (3)

where Ln, # is the n th Lototsky�Schnabl operator on C([0, 1]) associated
with # (see (2.2)) and Bn, * is defined in (1.1). Due to [6, formula (6.1.50),
p. 399] and (1.2), the definition (3) coincides exactly with (2) in the partic-
ular case *=e0 (here and in the sequel e0 denotes the continuous function
on [0, 1] of constant value 1) and therefore we may rightly refer to Mn, *

as to the n th generalized Bernstein�Durrmeyer operator associated with *.
The paper is split into two sections.
Section 1 is devoted to the study of the sequence of the operators Bn, *

defined in (1.1) and to its approximation behavior: we show that it is a
positive approximation process on the Banach lattice C([0, 1]) and state
also some estimates of the pointwise and uniform approximation in terms
of the classical modulus of continuity |( f, } ).

Moreover, a further uniform estimate which makes use of the Ditzian�
Totik modulus of continuity is also established.
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At last we prove a Voronovskaja-type formula, generalizing an analogous
result proved by Lupas� in [17, Satz 2.24] for the Beta operators.

In Section 2, according to the above definition (3), we introduce the
sequence of the operators Mn, * which is readily shown to be a positive
approximation process on C([0, 1]) as well.

Moreover, we state a Voronovskaja-type result and this is the key tool
to prove the main theorem of the section about the existence of a strongly
continuous positive contraction semigroup on C([0, 1]) which may be
expressed in terms of powers of the operators Mn, * and whose generator is
a second order differential operator; consequently, in force of standard
semigroup results, the solution of the associated Cauchy problem is
explicitly represented in the same way as well.

1. THE OPERATORS Bn, *

Let C([0, 1]) be the Banach lattice of all real-valued continuous func-
tions on [0, 1] endowed with the sup-norm & }& and the natural order.

Throughout this paper, for every p # N0 , we shall denote by ep the
continuous function on [0, 1] defined by the monomials ep(x) :=x p for
every x # [0, 1].

As usual, for each m # N, Cm([0, 1]) will denote the vector space of all
real-valued m-times continuously differentiable functions on [0, 1],
whereas o( } ) and O( } ) stand for the classical Landau symbols.

Let us fix a strictly positive continuous function *: [0, 1] � [0, 1] and
for every n # N consider the operator Bn, * : C([0, 1]) � C([0, 1]) defined
by

Bn, *( f )(x) :=
1

B(nx+*(x), n+*(x)&nx)

_|
1

0
tnx+*(x)&1(1&t)n(1&x)+*(x)&1 f (t) dt (1.1)

for all f # C([0, 1]) and x # [0, 1]. Clearly every Bn, * is positive and linear;
when *=e0 then Bn, e0

is just the n th Beta operator Bn introduced by
Lupas� in [17, p. 37], i.e.,

Bn, e0
( f )(x)=Bn( f )(x)

:=
1

B(nx+1, n+1&nx) |
1

0
tnx(1&t)n(1&x) f (t) dt. (1.2)
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Beta operators have been extensively studied in [17] and fall within a
more general class of positive linear operators (sometimes called Beta-type
operators) already considered in [1�3].

Our aim in this section is to carry out a detailed analysis of the
approximation properties of the operators Bn, * and to state some estimates
of the rate of convergence.

Let us start by stating the following result.

Theorem 1.1. For every f # C([0, 1])

lim
n � �

Bn, *( f )= f uniformly on [0, 1], (1.3)

i.e., the sequence (Bn, *)n # N is a positive approximation process on C([0, 1]).

Proof. Indeed

Bn, *(ep)(x)=
1

B(nx+*(x), n+*(x)&nx)

_|
1

0
tnx+ p+*(x)&1(1&t)n(1&x)+*(x)&1 dt

=
B(nx+*(x)+ p, n+*(x)&nx)

B(nx+*(x), n+*(x)&nx)

=
1(nx+*(x)+ p) 1(n+2*(x))
1(n+2*(x)+ p) 1(nx+*(x))

= `
p&1

k=0

(nx+*(x)+k)
(n+2*(x)+k)

(1)

for every n, p # N and x # [0, 1]; in particular

Bn, *(e1)(x)=
nx+*(x)
n+2*(x)

,

Bn, *(e2)(x)=
(nx+*(x))(nx+*(x)+1)
(n+2*(x))(n+2*(x)+1)

.

Since Bn, *(e0)=e0 for every n # N, it immediately follows that

lim
n � �

Bn, *(ei)=ei for i=0, 1, 2

uniformly on [0, 1], which implies (1.3) on account of Korovkin's theorem
(see, e.g., [6, Theorem 4.2.4, p. 214]). K
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Now we are able to give some estimates of the rate of the pointwise and
uniform convergence stated in the previous theorem. We shall use the
classical modulus of continuity |( f, } ) and also a weighted modulus of
continuity as defined in [26, 27] and generalized in [14].

We start with some preliminary notations. For each x # [0, 1] we shall
denote by �x the continuous function on [0, 1] defined by

�x(t) :=t&x (1.4)

for every t # [0, 1]. Applying formula (1) of the proof of Theorem 1.1 easily
gives

Bn, *(�x)(x)=
*(x)(1&2x)

n+2*(x)
, (1.5)

and

Bn, *(�2
x)(x)=

nx(1&x)+*(x)(2x2&2x+1)+*2(x)(2x&1)2

(n+2*(x))(n+2*(x)+1)
(1.6)

for every n # N and x # [0, 1].
Let us denote by . the continuous function on [0, 1] defined by

.(x) :=- x(1&x) (1.7)

for every x # [0, 1] and consider the following modulus of continuity

|2
.( f, $)� := sup

0�h�$
0�x\h.(x)�1

|22
h.(x) f (x)| (1.8)

for each $>0, where 22
h.(x) f (x) :=f (x&h.(x))&2 f (x)+ f (x+h.(x)) for

any x # [0, 1] such that 0�x\h.(x)�1.

Theorem 1.2. For every f # C([0, 1]), n # N and x # [0, 1] we get

|Bn, *( f )(x)& f (x)|

�2| \f, �nx(1&x)+*(x)(2x2&2x+1)+*2(x)(2x&1)2

(n+2*(x)+1)(n+2*(x)) + . (1.9)

Moreover

&Bn, *( f )& f&�2| \f,
1

- n+ for n�3. (1.10)

293APPROXIMATION OPERATORS AND SEMIGROUPS



If, in addition, f is differentiable in [0, 1] and f $ # C([0, 1]), then

|Bn, *( f )(x)& f (x)|

�| f $(x)|
*(x) |(1&2x)|

n+2*(x)

+2�nx(1&x)+*(x)(2x2&2x+1)+*2(x)(2x&1)2

(n+2*(x)+1)(n+2*(x))

_| \f $, �nx(1&x)+*(x)(2x2&2x+1)+*2(x)(2x&1)2

(n+2*(x)+1)(n+2*(x)) + . (1.11)

Proof. The estimates (1.9) and (1.11) directly follow from a general
result of Shisha and Mond [24] (see also [6, Theorem 5.1.2, p. 268]) on
account of (1.5) and (1.6).

The uniform estimate (1.10) is a consequence of (1.9) since

sup
0�x�1

Bn, *(�2
x)(x)�

1
n

for n�3,

as can be easily seen by using (1.6). K

A further uniform estimate is indicated in the next theorem.

Theorem 1.3. For every f # C([0, 1]) and n # N we get

&Bn, *( f )& f&�K \|2
. \f,

1

- n+�
+| \f,

1
n++ , (1.12)

where the constant K>0 is independent of f and n and |2
.( f, } )� is the

modulus of continuity defined in (1.8).

Proof. Let us choose f # C([0, 1]) and consider the Bernstein polyno-
mial g :=Bn( f ); for a fixed x # [0, 1] we have

g(t)& g(x)= g$(x)(t&x)+|
t

x
g"(s)(t&s) ds, t # [0, 1],

and therefore, on account of (1.5) and (1.6), we easily get

&Bn, *(g)& g&�C \1
n

&g$&+
1
n

&.2g"&+
1
n2 &g"&+

�C \1
n

&B$n( f )&+
1
n

&.2B"n( f )&+ , (1)
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C>0 being an absolute constant. On the other hand

1
n

&B$n( f )&�C | \f,
1
n+ ,

1
n

&.2B"n( f )&�C |2
. \f,

1

- n+�
,

which, together with (1), yields

&Bn, *(g)& g&�C \|2
. \f,

1

- n+�
+| \f,

1
n++ .

Hence for a suitable constant K>0

&Bn, *( f )& f&�&g& f&+&Bn, *(g)& g&+&Bn, *( f &g)&

�K \&Bn( f )& f&+|2
. \f,

1

- n+�
+| \f,

1
n++

�K \|2
. \f,

1

- n+�
+| \f,

1
n++ ,

as required. K

Now we are going to establish a Voronovskaja-type result for the
operators Bn, * . Henceforth we shall denote by _ the continuous function
on [0, 1] defined by

_(x) :=x(1&x) (1.13)

for every x # [0, 1].

Theorem 1.4. If u # C 2([0, 1]), then

lim
n � �

n(Bn, *(u)(x)&u(x))=
_(x)

2
u"(x)+_$(x) *(x) u$(x) (1.14)

uniformly with respect to x # [0, 1].

Proof. We shall apply a result by Mamedov [20]. First of all note that
from (1.5) and (1.6) it is immediate to conclude that

lim
n � �

nBn, *(�x)(x)=_$(x) *(x), lim
n � �

nBn, *(�2
x)(x)=_(x)

uniformly with respect to x # [0, 1] and, obviously,

sup
0�x�1

nBn, *(�2
x)(x)<+� (n # N).
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Therefore, by virtue of the above quoted result of Mamedov, to accomplish
(1.14) it suffices to show that

lim
n � �

nBn, *(�4
x)(x)=0 (1)

uniformly with respect to x # [0, 1].
To this purpose, we look for a good estimate of nBn, *(�4

x) and this is the
crucial part of the proof.

Formula (1) of the proof of Theorem 1.1 allows us to get an explicit
expression of Bn, *(�4

x)(x) for an arbitrary n # N and x # [0, 1]. Hence,
since 0<*(x)�1 for any x # [0, 1], a direct computation shows that

nBn, *(�4
x)(x)� fn(x), (2)

where

fn(x) :=
p(n, *0) x4+q(n, *0) x3+r(n, *0) x2+s(n, *0) x+24

n3 ,

with *0 , p(n, *0), q(n, *0), r(n, *0), and s(n, *0) defined as

*0 := min
0�x�1

*(x),

p(n, *0) :=3n2&18n&44n*0&24n*2
0+120,

q(n, *0) :=&6n2+172n&24*0&88*2
0&96*3

0&32*4
0 ,

r(n, *0) :=3n2&24n&58n*0&30n*2
0+240,

s(n, *0) :=26n&24*0&52*2
0&36*3

0&8*4
0 .

We readily get

lim
n � �

fn(x)=0 (6)

uniformly with respect to x # [0, 1] which implies (1) by virtue of (2) and
the proof is complete. K

Remark 1.5. In the particular case *=e0 , Theorem 1.4 states a
Voronovskaja-type result for the classical Beta operators Bn which has
already been proved in [17, Satz 2.24].
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2. THE OPERATORS Mn, *

In this section we introduce and study a sequence of positive linear
operators on C([0, 1]) which are obtained by a suitable composition of
the operators Bn, * defined in (1.1) together with the so-called Lototsky�
Schnabl operators (see (2.2)).

Our starting point is a continuous function *: [0, 1] � [0, 1] such that
1�2�*(x)�1 for every x # [0, 1]. Moreover let us set

#(x) :=2*(x)&1 (2.1)

for every x # [0, 1]. Then # is a continuous function on [0, 1] satisfying
0�#�e0 , and therefore for each n # N we may consider the n th Lototsky�
Schnabl operator on C([0, 1]) associated with #, i.e., the positive linear
operator Ln, # : C([0, 1]) � C([0, 1]) defined by

Ln, #( f )(x) := :
n

k=0

:
k

h=0
\n

k+\
k
h+ #(x)k (1&#(x))n&k xh(1&x)k&h

_f \h
n

+\1&
k
n+ x+ (2.2)

for all f # C([0, 1]) and x # [0, 1].
Such operators have been introduced and studied by Altomare [4, 5]; in

addition, a rather detailed analysis of their main properties may be found,
for instance, in [6, Chap. 6] together with some results concerning the
possibility of representing explicitly the solutions of particular Cauchy
problems in terms of powers of these and other operators.

Now, for the reader's convenience, we summarize those properties of the
operators Ln, # which shall be used in the sequel, referring to [6, Chap. 6]
for further details.

For each n # N one has

Ln, #(e0)=e0 , (2.3)

and consequently

&Ln, #&=&Ln, #(e0)&=1. (2.4)

Moreover for every f # C([0, 1])

lim
n � �

Ln, #( f )= f uniformly on [0, 1], (2.5)

i.e., the sequence (Ln, #)n # N is a positive approximation process on C([0, 1]).
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In addition, the following uniform estimate in terms of the first modulus
of continuity is also available

&Ln, #( f )& f&�2| \f,
1

- n+ (2.6)

for every n # N and f # C([0, 1]). At last we remind a Voronovskaja-type
result

lim
n � �

n(Ln, #(u)(x)&u(x))=
_(x)

2
#(x) u"(x), (2.7)

which holds uniformly with respect to x # [0, 1] for every u # C2([0, 1]).
After these preliminaries we can proceed further and for each n # N we

consider the linear operator Mn, * : C([0, 1]) � C([0, 1]) defined by

Mn, * :=Ln, # b Bn, * , (2.8)

where # satisfies (2.1) and Ln, # and Bn, * are defined in (2.2) and (1.1),
respectively. Note that, explicitly, for every n # N we have

Mn, *( f )(x)= :
n

k=0

:
k

h=0
\n

k+\
k
h+ #(x)k (1&#(x))n&k xh(1&x)k&h

_
�1

0 t:*, n
k, h(x)&1(1&t);*, n

k, h(x)&1 f (t) dt
B(:k, h

*, n(x), ;k, h
*, n(x))

(2.9)

for every f # C([0, 1]) and x # [0, 1], where :k, h
*, n(x) :=h+x(n&k)+

*(h�n+(1&k�n) x) and ;k, h
*, n(x) :=n&h&x(n&k)+*(h�n+(1&k�n) x)

(k, h # N, 0�h�k�n, x # [0, 1]).
Clearly every Mn, * is positive and &Mn, *&=&Mn, *(e0)&=1. The next

theorem indicates some approximation properties of the sequence (Mn, *)n # N .

Theorem 2.1. For every f # C([0, 1])

lim
n � �

Mn, *( f )= f uniformly on [0, 1], (2.10)

i.e., the sequence (Mn, *)n # N is a positive approximation process on C([0, 1]).
Moreover

&Mn, *( f )& f&�4| \f,
1

- n+ for n�3. (2.11)
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Proof. Indeed, for an arbitrary f # C([0, 1]) and n # N we have

&Mn, *( f )& f&�&Ln, #(Bn, *( f ))&Ln, #( f )&+&Ln, #( f )& f&

�&Bn, *( f )& f&+&Ln, #( f )& f&

due to (2.4). The assertion immediately follows by virtue of (1.3), (1.10),
(2.5), and (2.6). K

Remark 2.2. It would be desiderable to go deeper into the approxima-
tion properties of the operators Mn, * and to achieve a further uniform
estimate similar to that one stated in Theorem 1.3 for the operators Bn, * .
However, up to the present, this seems hard enough to get and remains an
open (and, perhaps, interesting) problem.

The operators Mn, * enjoy a Voronovskaja-type property, as shown in
the next theorem.

Theorem 2.3. Let _ be defined as in (1.13). Then for every u # C2([0, 1])
we get

lim
n � �

n(Mn, *(u)(x)&u(x))=*(x)(_(x) u$(x))$ (2.12)

uniformly with respect to x # [0, 1].

Proof. Let us consider the operators A1 : C2([0, 1] � C([0, 1]) and
A2 : C2([0, 1]) � C([0, 1]) defined by

A1(u)(x) :=
_(x)

2
#(x) u"(x),

A2(u)(x) :=
_(x)

2
u"(x)+_$(x) *(x) u$(x)

for every u # C2([0, 1]) and x # [0, 1]. Taking (2.1) into account, a simple
computation shows that, in order to accomplish (2.12), we have to prove
that

lim
n � �

&n(Mn, *(u)&u)&(A1+A2)(u)&=0 (1)

for every u # C2([0, 1]). Indeed, for an arbitrary n # N and u # C2([0, 1]),
we easily get

&n(Mn, *(u)&u)&(A1+A2)(u)&

�&n(Ln, #(u)&u)&A1(u)&+&Ln, #(A2(u))&A2(u)&

+&Ln, #& &n(Bn, *(u)&u)&A2(u)&,
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where each member on the right hand side tends to zero as n � � by
virtue of (1.14), (2.4), (2.5) and (2.7). Therefore (1) holds true and the
proof is complete. K

Remark 2.4. It is worth while underlining that, in the particular case
*=e0 , the results of Theorems 2.1 and 2.3 are to be referred to the operators
Mn, e0

, i.e., to the classical Bernstein�Durrmeyer operators. These same results
have already been stated in [11, The� ore� me II.2 and The� ore� me II.5], in
which a uniform estimate equal to (2.11) up to a constant is established.

We are now in a position to state the main theorem of this section about
the existence of a strongly continuous positive contraction semigroup on
C([0, 1]) which can be expressed in terms of powers of the operators
Mn, * . However, we need first to recall briefly some classical results about
the theory of strongly continuous semigroups on a Banach space, as may
be found, e.g., in [21, 22].

If A: D(A) � E is a closed linear operator defined on a dense subspace
D(A) of a Banach space (E, & }&) over the field K of real or complex
numbers, we say that a subspace D0 of D(A) is a core for A if it is dense
in D(A) for the graph-norm

&u&A :=&u&+&A(u)& (u # D(A)). (2.13)

If A1 : D(A1) � E and A2 : D(A2) � E are closed operators and D0 /D(A1)
& D(A2) is a core for A1 and A2 , then D(A1)=D(A2) and A1=A2

provided A1=A2 on D0 .
If A is closed and zI&A is invertible for some z # K (I being the identity

operator on E), then a subspace D0 of D(A) is a core for A if and only if
(zI&A)(D0) is dense in E. If (A, D(A)) is the generator of a strongly
continuous semigroup (T(t))t�0 on E, then a dense subspace D0 of D(A)
is a core for A if T(t)(D0)/D0 for every t�0.

As usual, for a given m # N, the power M m
n, * of order m of Mn, * is

defined by

M m
n, * :={Mn, *,

M m&1
n, * b Mn, * ,

if m=1,
if m�2.

Theorem 2.5. Let * be a continuous function on [0, 1] such that
1�2�*(x)�1 for every x # [0, 1] and let _ be defined as in (1.13). There
exists a strongly continuous positive contraction semigroup (T*(t))t�0 on
C([0, 1]) whose generator is the operator A* : D(A*) � C([0, 1]) defined by
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*(0) u$(0), if x=0,

A*(u)(x) :={*(x)(_(x) u$(x))$, if 0<x<1, (2.14)

&*(1) u$(1), if x=1,

for every u in

D(A*) :=[v # C1([0, 1]) & C2(]0, 1[) | lim
x � 0+

*(x) _(x) v"(x)

= lim
x � 1&

*(x) _(x) v"(x)=0]

such that for every t�0 and for every sequence (k(n))n # N of positive integers
satisfying limn � � k(n)�n=t, one gets

T*(t)= lim
n � �

M k(n)
n, * strongly on C([0, 1]). (2.15)

In particular, for every t�0

T*(t)= lim
n � �

M [nt]
n, * strongly on C([0, 1]), (2.16)

[nt] being the integer part of nt.

Proof. Let us consider the linear operator A: D(A) � C([0, 1]) defined
by

u$(0), if x=0,

A(u)(x) :={(_(x) u$(x))$, if 0<x<1, (1)

&u$(1), if x=1,

for every u in

D(A) :=[v # C 1([0, 1]) & C2(]0, 1[) | lim
x � 0+

_(x) v"(x)

= lim
x � 1&

_(x) v"(x)=0].

From [10, Theorem 2.3, Proposition 3.8 and Theorem 5.5] it follows that
(A, D(A)) is the generator of a strongly continuous semigroup on
C([0, 1]) and that C 2([0, 1]) is a core for A. Since clearly

A*=*A and D(A*)=D(A), (2)

(A* , D(A*)) is a generator, too, due to a result by Dorroh (see, e.g., [21,
B-II, Theorem 1.20, p. 131]).

301APPROXIMATION OPERATORS AND SEMIGROUPS



Moreover, for every u # D(A*) we have

&u&A*=&u&+&A*(u)&=&u&+&*A(u)&�&u&A , (3)

and, therefore, C2([0, 1]), which is dense in D(A) for the graph-norm
& }&A , is also dense in D(A*) for the graph-norm & }&A* , i.e., C2([0, 1]) is
a core for A* , too. Accordingly

(I&A*)(C2([0, 1])) is dense in C([0, 1]), (4)

I being the identity operator on C([0, 1]).
Now let us consider the linear operator Z* : D(Z*) � C([0, 1]) defined

by

Z*( f ) := lim
n � �

n(Mn, *( f )& f ) (5)

for every f # D(Z*) :=[g # C([0, 1]) | limn � � n(Mn, *(g)& g) exists in
C([0, 1])]

Applying Theorem 2.3 yields

C2([0, 1])/D(A*) & D(Z*) and Z*=A* on C 2([0, 1]). (6)

In particular D(Z*) is dense in C([0, 1]).
Moreover the range R(I&Z*) :=(I&Z*)(D(Z*)) of I&Z* is dense in

C([0, 1]) due to (4) and (6). Since &Mn, *&=1 for every n # N, we may
apply a result by Trotter [28] (see, also, [22, Chap. 3, Theorem 6.7, p. 96])
and conclude that the operator (Z* , D(Z*)) defined in (5) is closable and
that its closure (Z� * , D(Z� *)) is the generator of a strongly continuous con-
traction semigroup (T*(t))t�0 on C([0, 1]) satisfying (2.15).

Obviously every T*(t) is positive. Now, to accomplish the proof, we have
only to show that (Z� * , D(Z� *))=(A* , D(A*)). Indeed, since (Z� * , D(Z� *)) is
an extension of (Z* , D(Z*)), we already know that D(Z*)/D(Z� *) and
that Z� *=Z* on D(Z*). This, together with (6), implies that

C2([0, 1])/D(Z� *) and Z� *=A* on C2([0, 1]).

Consequently, by virtue of (4),

(I&Z� *)(C2([0, 1])) is dense in C([0, 1]),

i.e., C2([0, 1]) is a core for Z� * . Therefore D(Z� *)=D(A*) and Z� *=A* and
this completes the proof. K
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Remark 2.6. Obviously, all the results stated in the previous theorem
still hold true when *=e0 . In this case one has only to replace the
operators Mn, * by the classical Bernstein�Durrmeyer operators Mn .

Now we establish the next result.

Theorem 2.7. For a given f # C([0, 1]) the following statements are
equivalent:

(i) &Mn, *( f )& f&=o(1�n), n � �.

(ii) &T*(t) f& f&=o(t), t � 0+.

(iii) f is constant.

Proof. (i) O (ii). Fix t>0 and consider a sequence (k(n))n # N of positive
integers such that limn � � k(n)�n=t. After setting :n :=n &Mn, *( f )& f &
(n # N), it is easily seen that

&M k(n)
n, * ( f )& f&�

k(n)
n

:n for every n # N

because &Mn, *&=1.
But limn � � :n=0 by assumption and therefore, passing to the limit as

n � � in both members and taking the representation formula (2.15) into
account, we obtain T*(t) f= f which obviously implies (ii).

(ii) O (iii). Statement (ii) equals to f # D(A*) and A*( f )=0 (let us recall
that the operator A* , defined in (2.14), is the generator of the semigroup
(T*(t))t�0). Consequently

f $(0)= f $(1)=0 (1)

and there exists a constant K such that

f $(x)=
K

_(x)
(0<x<1). (2)

Combining (1) and (2) easily gives K=0 because f # C 1([0, 1]) and
_(0)=_(1)=0 (see (1.13)). But then f $#0 in [0, 1], i.e., f is constant, as
required.

The implication (iii) O (i) is straightforward, because Mn, *(e0)=e0 for
every n # N. K

Remark 2.8. Consider the linear operator B: D(B) � C([0, 1]) defined
as

;(0) u$(0), if x=0,

B(u)(x) :={:(x) u"(x)+;(x) u$(x), if 0<x<1, (2.17)

;(1) u$(1), if x=1,
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for every u in

D(B) :=[v # C1([0, 1]) & C2(]0, 1[) | lim
x � 0+

:(x) v"(x)

= lim
x � 1&

:(x) v"(x)=0],

where : and ; are continuous functions on [0, 1] enjoying the following
properties:

(i) : vanishes only at the endpoints 0 and 1 and is here differen-
tiable with :$(0){0{:$(1).

(ii) ; vanishes only at the midpoint 1�2 and is here differentiable
with ;$(1�2){0.

(iii) :�_=;�_$, where _ is defined in (1.13) and :�_ and ;�_$ still
denote the continuous extensions to the whole interval [0, 1] of the func-
tions :�_ and ;�_$ defined on ]0, 1[ and [0, 1]&[1�2], respectively.

(iv) There exists a positive constant c such that

c
2

�h(x)�c (0�x�1),

where, by definition, h :=:�_=;�_$.

If we define

* :=
h
c

, (2.18)

we easily get 1�2�*(x)�1 for every x # [0, 1]. In addition

:(x)=c*(x) _(x), ;(x)=c*(x) _$(x) for every x # [0, 1], (2.19)

and therefore the operator B defined in (2.17) and its domain D(B) may be
rewritten in an apparently different way as

c*(0) u$(0), if x=0,

B(u)(x) :={c*(x)(_(x) u$(x))$ if 0<x<1, (2.20)

&c*(1) u$(1), if x=1,

for every u in

D(B) :=[v # C 1([0, 1]) & C2(]0, 1[) | lim
x � 0+

c*(x) _(x) v"(x)

= lim
x � 1&

c*(x) _(x) v"(x)=0].
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Consequently, from Theorem 2.5 and the general theory of strongly con-
tinuous semigroups (see, e.g., [21, 22]), it follows that the problem

{
�u
�t

(x, t)=:(x)
�2u
�x2 (x, t)+;(x)

�u
�x

(x, t), 0<x<1, t�0,

(2.21)lim
x � 0+

:(x)
�2u
�x2 (x, t)= lim

x � 1&
:(x)

�2u
�x2 (x, t)=0, t�0,

u(x, 0)=u0(x), 0�x�1,

u0 # C1([0, 1]) & C2(]0, 1[), lim
x � 0+

:(x) u"0(x)= lim
x � 1&

:(x) u"0(x)=0,

has a unique (classical) solution given by

u(x, t)=T*(ct)(u0)(x)= lim
n � �

M [cnt]
n, * (u0)(x) (2.22)

for every x # [0, 1] and t�0. Moreover (2.22) holds uniformly with respect
to x # [0, 1].

In particular, if :=_ and ;=_$, then properties (i)�(iv) are obviously
fulfilled with c=1 and *=e0 and, on account of Remark 2.6, (2.22) reads
like

u(x, t)=Te0
(t)(u0)(x)= lim

n � �
M [nt]

n (u0)(x) (2.23)

for every x # [0, 1] and t�0, i.e., in this case the solution of problem (2.21)
is expressed in terms of powers of the Bernstein�Durrmeyer operators, as
already announced in [10], after Proposition 5.9.

Remark 2.9. If :=_�2 and ;=_$, the result stated in Remark 2.8 may
not be applied since property (iii) is not fulfilled. Nevertheless we are able
to establish the following theorem.

Theorem 2.10. Let _ be defined as in (1.13). There exists a strongly
continuous positive contraction semigroup (S(t))t�0 on C([0, 1]) whose
generator is the operator B1 : D(B1) � C([0, 1]) defined by

B1(u)(x) :=
_(x)

2
u"(x)+_$(x) u$(x) (0�x�1) (2.24)

for every u # D(B1) :=[v # C([0, 1]) & C2(]0, 1[) | B1(v) # C([0, 1])] such
that for every t�0 and for every sequence (k(n))n # N of positive integers
satisfying limn � � k(n)�n=t, one gets

S(t)= lim
n � �

Bk(n)
n strongly on C([0, 1]), (2.25)
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where, for every n # N, Bk(n)
n denotes the power of order k(n) of the nth Beta

operator Bn (see (1.2)).
In particular, for every t�0

S(t)= lim
n � �

B[nt]
n strongly on C([0, 1]), (2.26)

[nt] being the integer part of nt.

Proof. Let us first prove that (B1 , D(B1)) is a generator and, at this
purpose, we shall apply a theorem by Timmermans [25]. For the reader's
convenience we shall use the same notations of that paper.

Let us choose x0=1�2 and compute

W(x) :=exp \&|
x

1�2

2_$(t)
_(t)

dt+=
1

16x2(1&x)2 (0<x<1). (1)

Consequently

R(x) :=W(x) |
x

1�2 \
_(t)

2
W(t)+

&1

dt

=
1

x2(1&x)2 \&
2
3

x3+x2&
1
6+ (0<x<1), (2)

and therefore

&|
1�2

0
R(x) dx=|

1

1�2
R(x) dx=+�. (3)

It follows that (B1 , D(B1)) is the generator of a strongly continuous semi-
group on C([0, 1]) by virtue of [25, Theorem 3]. Now let us consider the
linear operator Q: D(Q) � C([0, 1]) defined by

Q( f ) := lim
n � �

n(Bn( f )& f ) (4)

for every f # D(Q) :=[g # C([0, 1]) | limn � � n(Bn(g)& g) exists in
C([0, 1])].

Applying Theorem 1.4 and the subsequent remark yields

C2([0, 1])/D(B1) & D(Q) and Q=B1 on C2([0, 1]). (5)

In particular D(Q) is dense in C([0, 1]).
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On the other hand &Bn &=1 for every n # N and

Bn(Pm([0, 1]))/Pm([0, 1]) (6)

for every n, m # N, where Pm([0, 1]) denotes the space of all polynomials
on [0, 1] of degree �m (see formula (1) of the proof of Theorem 1.1).

Since �+�
m=1 Pm([0, 1])=P([0, 1]) is dense in C([0, 1]) (P([0, 1])

being the subalgebra of all polynomials on [0, 1]), we may apply a result
by Schnabl (see, e.g., [6, Theorem 1.6.8, p. 68]) and conclude that the
operator (Q, D(Q)) defined in (4) is closable and that its closure (Q� , D(Q� ))
is the generator of a strongly continuous contraction semigroup (S(t))t�0

on C([0, 1]) satisfying (2.25).
Clearly every S(t) is positive. Now the proof will be complete if we show

that (Q� , D(Q� ))=(B1 , D(B1)). Indeed, since (Q� , D(Q� )) is an extension of
(Q, D(Q)), we already know that D(Q)/D(Q� ) and that Q� =Q on D(Q).
This, together with (5), implies that

Q� =B1 on P([0, 1]). (7)

Furthermore, from (6) and (2.25) it follows that

S(t)(P([0, 1]))/P([0, 1]) for every t�0,

i.e., P([0, 1]) is a core for Q� .
Therefore,

(I&Q� )(P([0, 1])) is dense in C([0, 1])

and, consequently,

(I&B1)(P([0, 1])) is dense in C([0, 1])

on account of (7). But then P([0, 1]) is a core for B1 , too, and this accom-
plishes the proof. K
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